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A CHAIN COMPACT SPACE WHICH 
IS NOT STRONGLY SCATTERED 

BY  

M. R A J A G O P A L A N *  

ABSTRACT 

A compact  T2 space X which is separable,  scattered and uncountable  but  still so 
that X"  - X ~ is countable for all a E [I, ~ )  is constructed.  This answers one 
of the problems presented by M. E. Rudin  in a conference as an open problem 
and attr ibuted by her  to Telgarsky. 

The following problem is attributed to Telgarsky by Mary Rudin and is now a 

problem of interest to many mathematicians. The problem is: 

Is there a compact Hausdorff scattered space X so that X is uncountable and 

X . _ X ~+1 is countable for all a E [0, f~) where a is an ordinal, X ~ = X and X a 

is the a th derived set of X for all a E [1, fl). 

The object of this paper is to show that there exists such a space. Mrowka, 

Rajagopalan, Soudararajan [5] showed that a compact Hausdortt  space is 

scattered if and only if it is chain compact. They also showed that the category of 

chain compact spaces is not generated by the category of all compact ordinals by 

the processes of taking finite products, quotients and closed subspaces. The key 

to this knowledge is the existence of chain compact spaces which are not strongly 

scattered. Such spaces were constructed essentially by taking a compact scat- 

tered space y of cardinality c and then making y the remainder in a suitable 

compactification ~Z of the set of integers Z with discrete topology. However  the 

compact space X which we mentioned above as existing is not strongly scattered 

and is not obtained in the above way as a compactification of Z with a known 

remainder.  We construct our X in f~ steps as a quotient of/3Z. As a matter  of 

fact X a is not strongly scattered for every ordinal a E [1, fl). This seems to be 

the only known such space. 

* The  author  acknowledges a faculty research grant  f rom Memphis  State Universi ty when this 
paper  was written. 
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NOTATIONS. Z denotes the discrete space of integers. All spaces considered 

here are Hausdorff. f lZ  is the Stone-(~ech compactification of integers. If ~ is a 

family of subsets of a set X then U A~nA denotes the union of members of ~. 

We follow [4] for definition of scattered space, derived order  and related 

concepts. 

DEFINITION l. A partial partition of f lZ  is a disjoint collection ~ of closed 

non-empty subsets of flZ. ~ need not be a cover of /3Z.  We denote a partial 

partition of f lZ  by 7r. A subset A C f lZ  is said to be saturated under 7r if it can 

be expressed as a union of members of 7r. 

DEFINITION 2. Let zq and zr2 be partial partitions of f lZ  induced by the 

families ~rl and ~r2 respectively. We say that 7r2 is larger than zq if 7rl C 7r2 as sets. 

REMARK 3. Let zr be a partial partition of f lZ  given by a family ~. Let 

y = UA~,~A. Then 7r can be considered as a partition of y in a natural way. We 

denote by y/zr the quotient space of y by 7r. 

LEMMA 1. Let Y1 C Y2 C . . .  C Y,  C . . .  be a strictly ascending sequence of 

open sets in f lZ  with the following properties: 

(a) YI is dense in Y.  for all n = 1 , 2 , 3 , . . .  

(b) Y, - Yn-1 is dense in Y.+I-  Y.-1 for all n = 2 , 3 , . . .  

(c) Y, is o'-compact for all n = 1, 2, 3 , . .  �9 

(d) There is a partition 7r, of Y,  so that the quotient space Y,/Tr, is Hausdorff 

and countable and locally compact for all n = 1,2, 3 , . . .  

(e) 7rn is larger than 7r._~ for all n = 2 , 3 , . . .  

(f) The quotient map q, : Y .  ~ Y, /rr ,  is closed. 

Then the following hold: 

(1) Y,/~& is scattered for all n = 1 , 2 , . . .  

(2) Given an integer n > 0 and a subset A C Y.  so that A E 7r, there exists an 

open and compact subset 0 of f iN  so that A C 0 C Yn and 0 is expressible as a 

union of members of 7rn. 

(3) There exists a countable collection {B~, B 2 , "  ", B ,  . . . }  of open subsets of 

f lZ  so that B ,  C U i=l Yk for all n = l, 2, . . . and B.  n Bm = ~ if m ~ n and 

m, n = 1, 2, 3,.  �9 �9 and Bk r Y,  for any two integers k, n > 0 and B ,  is open and 

closed relative to U ~ Yk for all n = 1, 2, 3 , . . . .  

(4) B . N ( Y k + ~ - Y k ) ~ O  for all n , k = l , 2 , . . ,  and B,  O Y I ~ O  for all 

n = 1 , 2 , 3 , . - .  

(5) Each B,  is saturated under the partial partition 7r where 7r = U 7~17r,. 
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PROOF. Now Y,/Tr, is locally compact, T2 and countable for all n = 

1, 2, 3 , ' - ' .  So each Y,/Trn is a subspace of its one point compactification which 

has to be scattered by the results of Mazurkiewicz and Sierpinski [7]. So Yn/Tr, is 

scattered and 0-dimensional locally compact Hausdorff space for all n = 

1,2,3, .  �9 �9 and the canonical map q, : Y, ~ Y,/~rn is a closed map. Now each Y, 

is open in flZ and hence locally compact and 0-dimensional. So every set A E It. 

is contained in a compact open set O o f /3Z  so that A C O C Y,. Since A is a 

member of 7r, and q, is a closed map and Y,/~r, is 0-dimensional and locally 

compact we have that there is a compact open set W of flZ so that A C W C 

O C Y, and W is a union of members of ~r.. Thus we have that every set A E ~, 

is contained in a compact open set VA of flZ so that VA C Y, and VA is 

saturated under ~-.. Using the fact that Y, is or-compact it follows that Y, can be 

expressed as a disjoint union U ~=~ Wkn where Wk, is a non-empty, compact 

open subset of flZ which is contained in Y, and also is saturated under It, for all 

k = 1 , 2 , 3 , . . .  

Now let Y = U~=~ Yk. Let ~r be the partition of Y obtained by declaring each 

member of ~r, as a member  of ~r for all n = 1 , 2 , 3 , . . .  Then all the sets Wk, 

above are compact open subsets of /3Z so that W~, C Y and is saturated under ~" 

for all k, n = 1, 2, 3,. �9 �9 Then Y can be written as a disjoint union M~ U M2 U 

�9 .. U M, U �9 �9 �9 of non-empty compact open subsets of flZ which are saturated 

under ~r. Then it follows that if {M,,, M, : , . . . ,  M , , - - .  } is a subcollection of 

{MI, M2 , . . . ,Mn , . . . }  then U ~=~M.~ is open in flZ and open and closed 

relative to Y and is saturated under ~r. 

Since Y.+~ ~ Y. and Y.§  Y. for all n = 1 , 2 , 3 , . . .  it follows that there 

exists a countable disjoint collection {{M~,, Mk~," ", Mk. , ' ' '  }/k = 1, 2 , . . .  } so 

that { M k , , M k : , " ' , M ~ . , " ' } C { M ~ , M 2 , ' " , M , ' " }  for all k = l , 2 , . . ,  and 

U 7=~ Mk. is not contained in any Y, where r = 1,2,. �9 �9 Put U ~=~ M~. = Bk for 

all k --- 1, 2,. �9 �9 Then clearly B, is open in/3Z and B, is open and closed in Y for 

all n = l , 2 , . . -  and B . s  for all n , k = 1 , 2 , 3 , . .  

m , n = 1 , 2 , 3 , . . ,  so that m ~ n .  

Now (b) gives that Y, - Y._I is dense in Y~ - Y,-1 

�9 and B, n B,, = O for all 

for all integers k > n. (This 

follows by induction.) So Y. - Y,_~ is dense in Y -  Y._~ for all integers n > 1. 

Now (a) gives that Y1 is dense in Y. Since each Bk is a non-empty open subset of 

Y it follows that Bk n Y~ fi O and Bk n (Y,§ - Y.) fi O for all k, n = 1, 2, 3, �9 �9 �9 

This proves our lemma. 

LEMMA 2. Let ~ be a countable family of non-empty compact, open subsets of 
[3Z which is pairwise disjoint. Let Y = U A~,~ A and 7r be the partial partition of 
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[3Z induced by ~. Then there exists a countable pairwise disjoint collection 

B~, B z , . . . ,  B,  . . .  of subsets of Y so that each B,  is open in [3Z and is a clopen 

subset of Y and B,  is a union of an infinity of members of q~ for n = 1, 2 , . . .  

PROOF. This is obvious. 

THEOREM 3. For every ordinal a belonging to [1,1)) there exists an open 

subset Y~ of [3Z and a partial partition ~r= of [3Z so that the following hold : 

(a) Y~ is dense in [3Z for all a E [1, fl). 

(b) Y, is tr-compact for all a E [1, ~). 

(c) Each member of 7r~ is contained in Y~ and r gives a partition of Y~ for all ot 

in [1, fl). 
(d) if a, fl E [1,1)) and ct < [3 then 7ra is larger than ~r,. (Then it follows that 

Y~ C Ya and Y~ is saturated under era.) 

(e) The quotient space Ya/cr, is countable, Hausdorff and locally compact for 

all a ~ [1, f~) 

(f) ~'~ is the partial partition {{n} I n E Z}  and hence Y~ = Z. 

(g) If  t~ E [1,1)) and [3 E [1, fl) such that [3 > a then every open set V in [3Z 

which is saturated under 7ra and intersects Y~ - Y~ and contained in Ya has a 

non-empty intersection with Y~ - I..J ~<~ yv. 

(h) Given a E [1, fl) and a set A E r there is a compact, open set V in [3Z so 

that A C V C Y.  and V is saturated under 7r~. 

(i) Ya ~ Y~ if ~, 13 e [1, n)  and ~ ~ [3. 

PROOF. It will be useful to define families ~ of non-empty compact open 

subsets of [3Z and the required open subsets Y~ and partial partitions 7ra of [3Z 

by transfinite induction for all a E [1, I]). We will define ~r~, Y,, ~ in such a way 
that I..J a~,%B = Y~ = (.J A~,,.A for all a E [1,I]). We will prove on the way 

that if a E [1,1"~) is given and the family ~a is defined then there exists a 

countably infinite, pairwise disjoint collection {C1, (?2," ", CR,'.-} of families 

CI, (?2,.. . ,  CR, ' "  of compact open sets with the following properties: 

(i) C~ is a countably infinite family of pairwise disjoint compact, open 

subsets of [3Z for k = 1 ,2 , . . .  

(ii) I fCR={0R, ,0RZ, ' ' ' , 0R , , ' ' ' } then  OR, E ~  for al lk,  n = l , 2 , 3 , . . . ( a n d  

is saturated under 7r.). 

(iii) If OR, is as in (ii) above then OR,r Y, for all k ,n  = 1 ,2 ,3 , . . .  and 

v ~[1,~). 
(iv) Ok, fq Or,, = O if either kf i  m or nf i  r for all k , m , n , r  = 1, 2 , 3 , . . .  

(v) If B~ = I..J ~=1 Ok, then B~ is open and closed in Y~ for k = 1, 2, 3 , . . .  
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Now let a be  a given ordinal  in [1, l-l). Suppose  that  we have  def ined Y ,  ~ and 

7r~ for  all ordinals  3' =< a and in such a way that  the p roper t i e s  (i)--(v) above  and 

the s t a t emen t s  (a)-( i)  of T h e o r e m  3 except  (g) are satisfied. (i), (ii), and (v) give 

that  Bk is open  in /3Z for  all k = 1, 2 , . . .  H e n c e  Bk is c o m p a c t  and open  i n / 3 Z  

for  all k = 1, 2, 3 , . . .  where  B--~ is the closure of  Bk in /3Z. M o r e o v e r  it follows 

f rom (iv) and the ex t r ema l  d isconnec tedness  o f / 3 Z  that  B .  f'l B m =  O if m f i n  

and m, n = 1, 2, 3 , - -  �9 Now Okn is c o m p a c t  for  all k, n = 1, 2, 3 , . .  �9 and Yv is o p e n  

i n / 3 Z  and Y~ C Y8 for  all 3', ~ E [1, a ]  and 3' < 8. Clear ly  Ok~ C I_J ~-~a Y~ for  

all k, n = 1, 2, 3, .  �9 �9 M o r e o v e r  (iv) and (v) give that  Bk is not  c o m p a c t  and hence  

Bk-Bk is a n o n - e m p t y  compac t  set for  all k = 1 , 2 , . . .  Now put  Y~+I= 

I..J ~=1/3~ u Y~. Let  1r~§ = 7r~ U {/3k - B~ [ k = 1, 2 , . - .  }. Now Bk is sa tu ra ted  

under  7ra for  k = 1, 2 , - .  �9 by (ii) and (v) and since/3k = Bk U (/3k - Bk) it follows 

that /3k C Y~§ and is sa tu ra ted  under  7r~+~ for  all k = 1, 2, 3, .  �9 �9 Le t  ~,§ be  the 

family of all c o m p a c t  open  sets con ta ined  in Y , . I  and sa tu ra ted  under  zr,.~. 

Clear ly  ~ + ,  is a family  of compac t ,  open  subsets  o f / 3 Z  and Y~+~ = I,.JB~~247 B = 

I..JA~ . . . .  A.  It  is also clear  that  7r~+, is a part ial  par t i t ion  of /3Z and every  

m e m b e r  of 7r~+, is con ta ined  in Y~+, and zr~+, is actually a par t i t ion of Y~+,. It is 

also clear  that  7r~+1 D 7r~ and hence  ~'~+1 is larger  than r Now Y~+, con ta ins /3 ,  

for  n = 1, 2, .  �9 �9 and the family {B,, B2,- �9 ", B , , .  �9 �9 } is a pairwise disjoint  family of 

compac t ,  open  subsets  o f / 3 Z  and/3~ ~ Y~ for  any  n = 1, 2 , . - -  Now (b), (c), and 

(h) of T h e o r e m  3 give that  Y, can be  expressed  as a coun tab le  dis joint  union 

A ,  t.J A2 t.J �9 �9 �9 U A ,  U �9 �9 �9 of  c o m p a c t  n o n - e m p t y  subsets  A , ,  A2," �9 .A~, �9 �9 �9 of 

/3Z so that  A .  is sa tu ra ted  unde r  ~-~ for  n = 1, 2 , - . -  Since r C Ir~+, we have  

that  A~ is sa tu ra ted  unde r  7r~+, as well for  n = 1 , 2 , , . .  Now Y~+,= 

kJ 7~,A~ t.J ~=,/3k and the sets A~ and /3k are compac t ,  open  n o n - e m p t y  

subsets  of  flZ which are sa tu ra ted  under  cry+, for  all k, n = 1, 2, 3, .  �9 �9 Then  Y,+, 

can be wri t ten as a coun tab le  dis joint  union E ,  U E 2 U . . . t 3 E ~  U . . .  of  

compac t ,  open  n o n - e m p t y  subsets  of  /3Z with each  E~ being sa tu ra ted  under  

7r~+,. Then  it follows that  if {E,,,,En~,...E~,.--} is a subcol lect ion of 

{E,, E2, .  �9 E~,. �9 �9 } then  I..J ~ ,  E ~  is bo th  open  and closed relat ive to Y~,, and 

is open  in /3Z.  N o w  put  ck = / 3  - B~ for  k = 1, 2, 3 , - . -  T h e n  the  facts ck E ~r.+, 

and Ek is sa tu ra ted  under  zr,.~ for  all integers  k > 0 give that  there  are integers  

n~,n2,"',nk,"" so that  E,~ D c k  for  k = 1 , 2 , 3 , ' . .  Then  the family 

{E~, E~,. �9 E,~,. �9 �9 } can be expressed  as a countab ly  infinite union ~ U ~2 U 

�9 -. U ~ U . . .  of a pairwise disjoint  family of collect ions ~ , N 2 , . .  ", ~ , ' "  

where  each ~ ,  is an infinite subcol lect ion of {E~, E ~ , . . . ,  E , , . . .  }. Then  if we 

wri te  ~k = {Ekl, Ek2,'" ", Ek. ,""  "}, E~. C Y,~+I and Ek. ~ Y., and Ek. fq E, .  = 

for  all k, n, 1, r > 0  and k r  1 or  n r  r. M o r e o v e r  the set F~ = I . .JT~E,.  is bo th  
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open and closed relative to Y~+~ and is open in flZ for k = 1, 2, 3 , . . .  Thus the 

family ~+~, and the set Yo+I and the partial partition ~r~.l have the properties 

(i)-(v). Since Y~+I ~ Y~ and Y~ is dense in flZ we have that Y~+~ is dense in flZ. 
Surely Y~+~ is open in flZ and o--compact. We have that Y,, is saturated under 

~+~ and the only members of ~r,+, which are not contained in Y~ are 

cl, c2 , ' - ' ,  c k , " .  mentioned above. Since ~'~+~ D ~r~ and Y,/~r~ is countable it 

follows that Y~+l/rr.+l is also countable. Let q~+~'Y~+~---~ Y~+~/rr~+l be the 

quotient map. N o w / ~  is a compact open set of flZ which is saturated under ~r~+l 

and contains ck. So q.+,(Bk) is a compact open set containing q~ in 

Y~+~/rr~+l for k = 1 , 2 , . . .  Moreover  if k #  n then q~+~(/~,) and q~+l(B,) are 

disjoint compact open subsets of Y~+,/rro+l containing q~+~(ck) and q~+~(c,) 
respectively. Let xoEqo+~(Y~). Then the fact that Yo is open in Y~+, and 

saturated under 7r~+~ gives that there is a compact open set V C q~+,(Y~) so that 

Xo E V. Then Xo and q~+,(c~) can be separated by open sets in Y~+drr~+~. Since 

Y~/~r~ is Hausdorff we get that  Y~+,/~.+I is a countable, locally compact, 

Hausdorff space. It is clear that Yo+I A Y~ for all 3' E [1, ~ )  so that y _-< a. 

Now let k be a given integer > 0. Let V. = (3 7-.0~. Then V, is compact, 

open and f"l ~=1 V. = c, and each V, is saturated under rr~+~. So every open set 

W in Y~+I which contains ck must contain V,o for some no>0.  Since 

Ok, A (Y,, - LJ ~<o Y~) / Q for all integers i > 0, it follows that 

q~+~(Y~ - U ~<~ Y~) is dense in q~+l(Yo+l - Yo). Thus we get that if a E [1,1-1) is 

given and we have defined ~ ,  Y,  ~r~ for all ), ~ [1,1"~) so that 3' <--a and 

satisfying (a)-(i) except (g) of Theorem 3 and statements (i)-(v) in the proof of 

this theorem then there are ~ + , ,  Y~+I and ~'~+~ satisfying (a)-(i) except (g) and 

(i)-(v) of this theorem. 

Now suppose that a is a limit ordinal and we have defined ~ ,  Y,  ~r~ for all 

3' E [1, a )  so as to satisfy (a)-(i) of Theorem 3 and (i)-(v) in its proof except 

possibly (g). Then choose an ascending sequence of ordinals a~ < a2 <  " "  < 

a ,  < . . .  which converges to a and the partial partitions r r~ , ,~ , . . . ,T r~  . . .  

These satisfy the conditions of Lemma 1. So there exists a countable disjoint 

collection { B , , B 2 , . - . , B . , . . . }  of open sets B1, B 2 , " ' , B . , " "  in flZ so that 

B. C U ~ Y ~  = UT_~ Yo, and B, 0 (Y~,+,- Y . , )~  ~ for i = 1 , 2 , 3 , . . .  and B, is 

saturated under the partial partition rr._ = UT=~'~, = U~<~fr, for 

all n = 1 , 2 , 3 , . . .  Put .Mr. = B . - B .  for n = 1 , 2 , 3 , . . ,  and Y~ = 

U~<~Y~ U U ~ = I B ,  and 7 r ~ = T r o _ U { M ~ , M : , . . . , M r . . ' . } .  Let ~ be the 

family of all compact open sets o f /3Z  which are contained in Y. and which are 

saturated under 7r~. Then we have the following: 
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(I) Y. D Y~ and 7ro is larger than ~r~ for all 3' E [1, a )  and rr~ is a partial 

partition of /3Z and is actually a partition of Y~. 

(II) Since each Yv is o--compact for y < a and a is a countable ordinal and 

Y~ = U ~<~ Y~ U U 7=1/~. it follows that Y~ is it-compact. 

(III) Y~ is saturated under ~r~ for all 3~ E [1, a) .  

(IV) Let q~ : Y~ --~ Y~/vr~ be the canonical map. Then 

Y~/rr~ = q . ( Y ~ ) =  U q~(Y,)U C) q " ( B . - B , ) .  
, r < a  n = l  

Now /~, - B ,  E yr. and hence q. (/~, - B , )  is a singleton for n = 1, 2, 3 , . - .  If 

3' 6 [1, a )  then Y~ is saturated under 7r v and rr. is larger than rr~. Thus there is a 

natural one-to-one onto map from q. (Yv) onto Y~/7r~. Since Yv/rr, is countable, 

it follows that Y.\1ro is countable. Clearly B. is compact open in /3Z and is 

saturated under yr.. Thus Y~/lr. is locally compact at q . ( / ~ , - B , )  for n = 

1 , 2 , 3 , . . .  It is also obvious that q.(Y~) is a locally compact open subspace of 

Y,/Tr. for all 3' ~ [1, a ) .  So Y~/vr~ is locally compact. A similar idea to the one 

used to extend from a to a + 1 gives that Y~/~r. is also Hausdorff. 

(V) If A E vr~ then there is a compact open set V C flZ so that A C V C Y. 

and V is saturated under yr.. 

( V I ) Y ~  Y~ for all 7 E[1 ,  a) .  

(VII) Y, can be written as a disjoint union E ~ U E 2 U . . .  U E ,  U - . .  of 

compact, open non-empty subsets E~, E2 , - ' . ,  E , , . . .  of flZ so that each E,  is 

saturated under rr~. Then we can find a countable subcollection 

{E. , ,E .2 , - - - ,E .~ , . - .}  of { E ~ , E 2 , - " , E , , ' - - }  so that E,~ ~ Y, for all k = 

1 , 2 , 3 , . . -  and ~, E[1 ,  a) .  Then adopting a similar argument to one used in 

getting the extension from a to (a + 1) above we get that a countably infinite, 

pairwise disjoint collection 

(Cl, G, G,.--, c,,...} 

of families G ,  (?2," �9 ", C.,.  �9 �9 of compact, open sets with properties (i)-(v) in the 

beginning of the proof of this theorem exist. Thus our transfinite induction is 

complete and we do get all our  sets Y~ and partial partitions fro for all a E [1, ~ )  

so that all the conditions (a)-(i) of the theorem are satisfied by the Y. and rr. 

that we have chosen except possibly (g). We now prove that (g) is also satisfied by 

the chosen sets Y. and partial partitions fro. To prove ,(g) we first observe the 

following statement: 

(g') Let a E [1, fl) and A C Y.+, and A ~ 7r.+~ then every open set U C flZ 

so that A C U C Y~+~ and U is saturated under 7ro+~ has a non-empty 

intersection with Y. - U v<~ Y,  
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Now let a be a given limit ordinal  in [1,11) and assume that  we have shown 

that if & 3' E [1, a )  and ~ < 3' then every open  set V o f / 3 Z  so that V C Y, and 

V n (Y,  - Ys) # ~ has a non -empty  intersection with Y8 - U ,<8 Y,. Then  f rom 

the construct ion of Y~ and rr~ we have that  if A E rr~ and A ~7 U ~<~ Y~ then 

there is an increasing sequence of  ordinals al  < a2 < �9 �9 �9 < a ,  < �9 �9 �9 and a set 

B C U ,<, Y~ so that  B is open  in flZ and B is saturated under  the partial 

part i t ion rr,_ and B is open  and closed relative to U ~<~ Y~ a n d / ~  - B = A and 

B n (Y~.., - Y, .)  # O for  all n > 0. Thus  we have that  if V is an open  set in Y~ 

(and hence  open  in /3Z)  and V n (Y,  - U ,<~ Y~) = A and V is saturated under  

fro then V n (Y~.+, - Y~.) # O for  some n so that a ,  > & So by our  induct ion 

assumpt ion V n (Y8 - U ,<~ Y,) ~ ~ .  

Now it is clear f rom the above  facts and transfinite induct ion and the fac t  that  

Y, is dense in flZ and 7rl is the collection {{n}t n E Z} that (g) is true for all 

a ~ [1 ,~) .  

Thus  we have proved our  theorem.  

THEOREM 4. There exists a compact Hausdorff scattered space X which is 

uncountable but X ~ - X "+~ is countable for all a E [1,1"l) and also having only 

countably many isolated points. 

PROOF. For  every ordinal  a E [1, f l)  let rr~ be the partial part i t ion of f lZ and 

Y~ be the open  subset of flZ which was const ructed  in T h e o r e m  3. Now define a 

part i t ion rr of f lZ as rr = U ~ < a  rr, tO {flZ - U~<a Y~}. Let  X be the quot ient  

flZ/rr of f lZ induced by rr. Let  q : f lZ-+ flZ/rr be the canonical  map.  We  will 

show that  X is a compac t  Hausdorf f  separable space in which X = -  X ~+~ is 

countable  for all a @ [1,1"l). For  this, we see that Ir is larger than rr~ for all 

a E [1,fl) .  Hence  Y~ is saturated under  rr and thus q(Y~) is open  in X for all 

a E [1, l'l). Let  A C Y= and belong to rr= for some a E [1, fl). Then  there is a 

compact  open  set V of f lZ so that A C V C Y~ and V is saturated under  rr, and 

hence  rr. So q ( V )  is a compact  open  subset of X containing q ( A )  and not  

conta ining q ( f l Z -  U , < ,  Y,). If A, B E r r  and nei ther  of  them is equal to 

/3Z - U~<n  Y~ then there is a 8 E [1, l'~) so that A tO B C Y8 and hence  there 

exists a compac t  open  set w in flZ so that  w C Y~ and A C w C (flZ - B)  and w 

is saturated under  7ra. Then  q (w) is compac t  and open  in X which contains q ( A )  

and not q (B).  Thus  we get that  X is Hausdorff .  It is clear that  X is compact .  It is 

also clear that  q(Z )  is dense in X and q({n}) is open  in X because {n} E r r  for all 

n E Z. Thus  the set of isolated points of X is countable.  Now let a E [1,1"l) be 

given. The  s ta tement  (g) of T h e o r e m  3 gives us that q(Y ,  - Uv<~ Y,)  is dense in 

q(Y~+~-Y~). So if we know that q ( A ) E X  ~ for all A ~ r r ~  and A C 
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( Y a - (  U~,<,~ Y~)) then it follows that q ( B ) E  X ~'+1 for all B E 7r~+1 and B C 

(Y~+I - Y~ ). Likewise, we get from (g) of Theorem 3 that if c~ is a limit ordinal in 

[1,1-1) and q ( A ) E  X ~ for all A E Y~ - U,<~ Y~ and y E [1, a )  and A E r then 

q ( B ) E X "  for all B ~ ~', and B C(Y~ - Us<~ Yn). Since q(Y , )  is countable 

for all a E [1, fl)  it follows that X ~ - X ~ is countable for all a E [1, fl). Now (e) 

of Theorem 3 gives that q(Y~) is scattered and we have seen above that it is 

open in X and q(Y, ,)C q(Yo) if a, /3 E [1,fl) and a </3. Thus if M C X  is 

non-empty and has more than one element in it and 6 is the least ordinal in [1, fl) 

so that M n q (Ys) ~ ~ then the fact that q (Ys) is open in X and is scattered 

gives us that there is an Xo E M n q(Ys) so that {Xo} is open in the relative 

topology of q(Y~) n M and hence open in M because q(Ys) n M is also open 

relative to M. So X is scattered. 

COROLLARY 5. There exists ~ separable compact, T2 scattered space X such 

that X is not strongly scattered and such that every derived set X ~ with I Xa [ not 

finite is not strongly scattered. (We recall that a space Y is strongly scattered if 

I A [ = l , ~ [  for a l l A C Y ) .  

PROOF. The space X of Theorem 4 has the properties required in 

Corollary 5. 

REMARK. We note that the characteristic system of the space X of Theorem 

4 is (1), 1). 
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