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A CHAIN COMPACT SPACE WHICH
IS NOT STRONGLY SCATTERED

BY
M. RAJAGOPALAN'

ABSTRACT

A compact T, space X which is separable, scattered and uncountable but still so
that X* — X=*' is countable for all a €[1, Q) is constructed. This answers one
of the problems presented by M. E. Rudin in a conference as an open problem
and attributed by her to Telgarsky.

The following problem is attributed to Telgarsky by Mary Rudin and is now a
problem of interest to many mathematicians. The problem is:

Is there a compact Hausdorff scattered space X so that X is uncountable and
X* — X=*"is countable for all « € [0, Q) where « is an ordinal, X°= X and X*
is the ath derived set of X for all a« €[1, Q).

The object of this paper is to show that there exists such a space. Mrowka,
Rajagopalan, Soudararajan [5] showed that a compact Hausdorff space is
scattered if and only if it is chain compact. They also showed that the category of
chain compact spaces is not generated by the category of all compact ordinals by
the processes of taking finite products, quotients and closed subspaces. The key
to this knowledge is the existence of chain compact spaces which are not strongly
scattered. Such spaces were constructed essentially by taking a compact scat-
tered space y of cardinality ¢ and then making y the remainder in a suitable
compactification 8Z of the set of integers Z with discrete topology. However the
compact space X which we mentioned above as existing is not strongly scattered
and is not obtained in the above way as a compactification of Z with a known
remainder. We construct our X in () steps as a quotient of BZ. As a matter of
fact X is not strongly scattered for every ordinal a € [1,Q). This seems to be
the only known such space.

' The author acknowledges a faculty research grant from Memphis State University when this
paper was written.
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NotaTioNs. Z denotes the discrete space of integers. All spaces considered
here are Hausdorff. BZ is the Stone-Cech compactification of integers. If & is a
family of subsets of a set X then U ,c3 A denotes the union of members of ¥.
We follow [4] for definition of scattered space, derived order and related
concepts.

DerFINITION 1. A partial partition of BZ is a disjoint collection § of closed
non-empty subsets of BZ. ¥ need not be a cover of BZ. We denote a partial
partition of BZ by . A subset A C BZ is said to be saturated under = if it can
be expressed as a union of members of .

DEeriniTION 2. Let m, and mr, be partial partitions of BZ induced by the
families 7, and r, respectively. We say that ., is larger than 4, if 7, C m, as sets.

ReMARK 3. Let 7 be a partial partition of BZ given by a family §. Let
y = Uaex A. Then 7 can be considered as a partition of y in a natural way. We
denote by y/m the quotient space of y by =

LEMMA 1. Let Y, CY,C---CY, C--- be a strictly ascending sequence of
open sets in BZ with the following properties:

(a) Yy isdense in Y, foralln =1,2,3,---

() Y.~ Y., isdense in Y,..— Y._, foralln=2,3,---

(c) Y. is o-compact for all n =1,2,3,- -

(d) There is a partition . of Y. so that the quotient space Y,/ w, is Hausdorff
and countable and locally compact for all n =1,2,3,---

(e) m. is larger than mw._, for all n =2,3,---

(f) The quotient map q. : Y. — Y./m. is closed.

Then the following hold:

(1) Y./m. is scattered for all n =1,2,---

(2) Given an integer n >0 and a subset A C Y, so that A € m, there exists an
open and compact subset O of BN so that A C O C Y, and O is expressible as a
union of members of ..

(3) There exists a countable collection {B,, B, - - -, B, - - -} of open subsets of
BZ so that B, C U, Y, foralln=1,2,--- and B,NB,, =& if m# n and
m,n=1,2,3,--- and B, L Y. for any two integers k, n >0 and B, is open and
closed relative to U 5., Yi for all n =1,2,3,---.

4) B.N(Yin—Y)AD for al nk=1,2,--- and B, NY#J for all
n=123,---

(5) Each B, is saturated under the partial partition 7w where w= U _, m,.
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Proor. Now Y,/w. is locally compact, T, and countable for all n =
1,2,3,---.So each Y./, is a subspace of its one point compactification which
has to be scattered by the results of Mazurkiewicz and Sierpinski [7]. So Y./, is
scattered and O-dimensional locally compact Hausdorff space for all n =
1,2,3, - and the canonical map g, : Y. — Y./m. is a closed map. Now each Y,
is open in BZ and hence locally compact and 0-dimensional. So every set A € .
is contained in a compact open set O of BZ so that A CO C Y,. Since A is a
member of , and g, is a closed map and Y,/m, is O-dimensional and locally
compact we have that there is a compact open set W of BZ so that A CW C
O C Y. and W is a union of members of m.. Thus we have that every set A € m,
is contained in a compact open set V, of BZ so that V, CY, and V, is
saturated under .. Using the fact that Y, is o-compact it follows that Y, can be
expressed as a disjoint union U 5., Wi, where W,, is a non-empty, compact
open subset of BZ which is contained in Y, and also is saturated under m, for all
k=1,2,3,---

Now let Y = U5_, Y.. Let 7 be the partition of Y obtained by declaring each
member of 7, as a member of # for all n =1,2,3,--- Then all the sets W,
above are compact open subsets of BZ so that W, C Y and is saturated under =
for all k,n=1,2,3,--- Then Y can be written as a disjoint union M; UM, U
-+« UM, U- - of non-empty compact open subsets of BZ which are saturated
under . Then it follows that if {M,, M., -+, M,,---} is a subcollection of
{Mi,M,,--- M, ---} then Uz, M, is open in BZ and open and closed
relative to Y and is saturated under .

Since Y,..D Y, and Y, #Y, forall n=1,23,--- it follows that there
exists a countable disjoint collection {{Mi,, M, My, -}k =1,2,--+} so
that {My, M, -, My, - -} C{M,M;,- -, M, ---} for all k=1,2,--- and
U 7., M,, is not contained in any Y, where r = 1,2, - - Put U ..M., = B, for
allk =1,2,- - Then clearly B, is open in BZ and B, is open and closed in Y for
all n=1,2,--- and B.€ Y, for all n,k=1,2,3,--- and B, N B,, = for all
myn=1,2,3--- so that m# n.

Now (b) gives that Y, — Y,_,is dense in Y, — Y,_; for all integers k > n. (This
follows by induction.) So Y, — Y., is dense in Y — Y, for all integers n > 1.
Now (a) gives that Y, is dense in Y. Since each B is a non-empty open subset of
Y it follows that B, N Y, Z#and B, N(Y,..— Y, ) #foralltk,n=1,2,3,---

This proves our lemma.

LeEmMma 2. Let § be acountable family of non-empty compact, open subsets of
BZ which is pairwise disjoint. Let Y = U .es A and m be the partial partition of



120 M. RATAGOPALAN Israel J. Math.

BZ induced by §. Then there exists a countable pairwise disjoint collection
By, B, -+, B, - - of subsets of Y so that each B, is open in BZ and is a clopen
subset of Y and B, is a union of an infinity of members of § forn=1,2,---

Proor. This is obvious.

THEOREM 3. For every ordinal a belonging to [1,Q) there exists an open
subset Y, of BZ and a partial partition m, of BZ so that the following hold:

(a) Y, is dense in BZ for all a €[1,0).

(b) Y. is o-compact for all a €[1,Q).

(c) Each member of m, is contained in Y, and =, gives a partition of Y., for all «
in [1,Q).

d) if a, BE[1,Q) and « < B then m, is larger than m.. (Then it follows that
Y. C Ys and Y, is saturated under m,.)

(e) The quotient space Y. /. is countable, Hausdorff and locally compact for
all a €[1,0Q)

(f) 7 is the partial partition {{n}|n € Z} and hence Y, = Z.

@) If « €[1,Q) and B €[1,Q) such that B > a then every open set V in BZ
which is saturated under ws and intersects Yg — Y, and contained in Yy has a
non-empty intersection with Y. — U .. Y,.

(h) Given a €[1,Q) and a set A € =, there is a compact, open set V in BZ so
that A CV CY, and V is saturated under ..

(i) Y.#Ysif a,BE(1,Q) and a # B.

Proor. It will be useful to define families §. of non-empty compact open
subsets of BZ and the required open subsets Y, and partial partitions ., of 8Z
by transfinite induction for all @ €[1, Q). We will define =., Y., §. in such a way
that U peg. B =Y, = U ac.. A for all a €[1,Q). We will prove on the way
that if « €[1,Q) is given and the family &. is defined then there exists a
countably infinite, pairwise disjoint collection {Ci, Cy, -+, Ci,* - - } of families
Ci, Gy, -+, G, - - - of compact open sets with the following properties:

(i) C. is a countably infinite family of pairwise disjoint compact, open
subsets of BZ for k =1,2,---

(i) ¥ C. ={0x1,042," -, 0kn, - - - } then Oy, € F, for all k,n =1,2,3,--- (and
is saturated under ).

(iii) If O is as in (ii) above then O, Y, for all k,n=1,2,3,--- and
vy €[, a).

@iv) O N O,, = if either k#m or n#r for all k,myn,r=1,2,3,---

(v) B, = U3, O.. then B, isopen and closed in Y, fork =1,2,3,- -
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Now let « be a given ordinal in [1, ). Suppose that we have defined Y., &%, and
mr, for all ordinals y < « and in such a way that the properties (i)~(v) above and
the statements (a)-(i) of Theorem 3 except (g) are satisfied. (i), (ii), and (v) give
that By is open in BZ for all k =1,2,--- Hence B.is compact and open in 8Z
forall k =1,2,3,--- where Ek is the closure of B, in BZ. Moreover it follows
from (iv) and the extremal disconnectedness of 8Z that B.N B,=Qif m#n
and m,n=1,2,3,--- Now O iscompactforall k,n =1,2,3,---and Y, is open
inBZ and Y, CY; forall y, 8 €[1,a] and y < 8. Clearly O, C U ,.. Y, for
allk,n =1,2,3, - - Moreover (iv) and (v) give that B, is not compact and hence
B.,~ B is a non-empty compact set for all k =1,2,--- Now put Y,.,=
Ui BcUY.. Let musy=m U{Bi—B.|k=1,2,---}. Now B, is saturated
under m, for k =1,2,- - by (i) and (v) and since B, = B U (Bi — By) it follows
that B, C Y.., and is saturated under .., for all k =1,2,3,-- - Let §.., be the
family of all compact open sets contained in Y.., and saturated under m,.:.
Clearly §.+1 is a family of compact, open subsets of 8Z and Y., = Uses...B=
Uaen., A. It is also clear that .., is a partial partition of BZ and every
member of m,., is contained in Y, ., and .., is actually a partition of Y,.,. Itis
also clear that .., D m. and hence .., is larger than .. Now Y,., contains B,
forn =1,2,- - and the family {By, B,, - - -, B,, - - - } is a pairwise disjoint family of
compact, open subsets of Z and B, Y, forany n = 1,2, - - Now (b), (c), and
(h) of Theorem 3 give that Y, can be expressed as a countable disjoint union
AlUAU -~ UA, U --- of compact non-empty subsets A, Ay, -+ A, --- of
BZ so that A, is saturated under o, for n =1,2,--- Since m, C w..: we have
that A, is saturated under m,., as well for n=1,2,:-- Now Y, =
U1 A, Ui Be and the sets A, and B, are compact, open non-empty
subsets of BZ which are saturated under 7,., forall k, n =1,2,3,--- Then Y,.,
can be written as a countable disjoint union E,UE,U ---UE, U --- of
compact, open non-empty subsets of BZ with each E, being saturated under
Tra+1. Then it follows that if {E.,E., ‘- E.,---} is a subcollection of
{E,,Es -+, E, - }then U i., E, is both open and closed relative to Y,., and
is open in BZ. Now put ¢, = B— B, for k =1,2,3,- - Then the facts ¢; € 7o
and E, is saturated under .., for all integers k > 0 give that there are integers
Ny, Nz M, so that E, Do for k=1,2,3,--- Then the family
{Eny Eny, * - -, En, - - - } can be expressed as a countably infinite union 2, U 2, U
- UP,U--- of a pairwise disjoint family of collections @, %2, +, Dy, - -+
where each &, is an infinite subcollection of {E,, E.,,* - -, E.,, -+ * }. Then if we
write 9, ={Ei,,Ex,," ", Ev., "}, Ex, C Yos; and E, € Y, and E,, N E,, =
for all k,n, 1, r >0 and k# 1 or n# r. Moreover the set F, = U%_, E,_ is both
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open and closed relative to Y..: and is open in BZ for k =1,2,3,--- Thus the
family .1, and the set Y,.,; and the partial partition ., have the properties
(i}-(v). Since Y..1 D Y, and Y, is dense in BZ we have that Y., is dense in BZ.
Surely Y,.; is open in BZ and o-compact. We have that Y, is saturated under
m.+1 and the only members of m.., which are not contained in Y, are
¢, €2 " %, Cky -+ mentioned above. Since m,.; D 7, and Y./, is countable it
follows that Y,.i/m... is also countable. Let q..1: Yos1— Y,ui/7as1 be the
quotient map. Now B, is a compact open set of 8Z which is saturated under 7.,
and contains ¢.. So ¢..:(B:) is a compact open set containing g...(c) in
Yos1/Tasr for k =1,2,- - Moreover if k# n then g...(Bi) and g...(B.) are
disjoint compact open subsets of Y..i/m,.: containing g...(cx) and gu«i(c,)
respectively. Let xo€ q..1(Y.). Then the fact that Y, is open in Y,., and
saturated under .., gives that there is a compact open set V C q.+1(Y,,) so that
%o € V. Then x, and q...(c¢k) can be separated by open sets in Y,.1/#,+1. Since
Y./m, is Hausdorff we get that Y..,/m..: is a countable, locally compact,
Hausdorff space. It is clear that Y,..# Y, for all y €[1,Q) so that y = a.

Now let k be a given integer >0. Let V, = U 7,0,. Then V, is compact,
open and () 7., V, = ¢, and each V, is saturated under ... So every open set
W in Y,., which contains ¢, must contain V, for some ne>0. Since
OuN(Y.—U,..Y,)ZD for all integers >0, it follows that
Gusi(Yo — U .. Y,)isdense in gu.i(Yar1 — Y.). Thus we get that if « € [1,Q)is
given and we have defined &,, Y,, m, for all y €[1,Q) so that y =« and
satisfying (a)-(i) except (g) of Theorem 3 and statements (i)-(v) in the proof of
this theorem then there are §..1, Y.+ and m.., satisfying (a)-(i) except (g) and
(i}~(v) of this theorem.

Now suppose that « is a limit ordinal and we have defined §,, Y,, m, for all
v €1, @) so as to satisfy (a)-(i) of Theorem 3 and (i)~(v) in its proof except
possibly (g). Then choose an ascending sequence of ordinals a;<a,< - <
a, < +-- which converges to a and the partial partitions ., ey =" ) Wa, =" *
These satisfy the conditions of Lemma 1. So there exists a countable disjoint
collection {Bi, Bs,---, B.,--} of open sets By, By, -+, B, -+ in BZ so that
B,cU,..Y,=U~ Y, and B, N(Y.,,,— Y.)#QD fori=1,2,3,--- and B, is
saturated under the partial partition m,-=Ur m, =U,m, for
al n=1,23,--- Put M,=B,—B, for n=123--+ and Y.=
U,-Y, U Ui B, and m = m-U{My,Ms,-- -, M, ---}. Let . be the
family of all compact open sets of BZ which are contained in Y, and which are
saturated under m,. Then we have the following:
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(I) Y.DY, and =, is larger than , for all y €[1,a) and =, is a partial
partition of BZ and is actually a partition of Y,.

(II) Since each Y, is o-compact for y < a and « is a countable ordinal and
Y.= U,..Y, U Uz, B, it follows that Y, is o-compact.

(IIT) Y, is saturated under =, for all y €[1, a).

(IV) Let q.: Y.— Y,/m. be the canonical map. Then

Yo/m =4 (Y)= U 4.(Y,)U U q"(B,~ B,).

Now B, — B, € w, and hence G (R. — B,) is a singleton for n =1,2,3,--- If
v €[1, @) then Y, is saturated under =, and =, is larger than r,. Thus there is a
natural one-to-one onto map from 4.(Y,)onto Y, /m,. Since Y, /m, is countable,
it follows that Y,\m, is countable. Clearly B, is compact open in BZ and is
saturated under .. Thus Y./, is locally compact at q.(B,— B,) for n =
1,2,3,--- It is also obvious that ¢.(Y,) is a locally compact open subspace of
Y./m. for all y €[1, a). So Y./m. is locally compact. A similar idea to the one
used to extend from a to a +1 gives that Y,/w, is also Hausdorfl.

(V) If A € ., then there is a compactopenset VCBZsothat A CV CY,
and V is saturated under ..

(VDY.#Y, for all y €[1, ).

(VII) Y, can be written as a disjoint union E;UE,U --- UE, U --- of
compact, open non-empty subsets E, E,, -+, E,, -+ of BZ so that each E, is
saturated under #,. Then we can find a countable subcollection
{E.,En, " *,En, '} of {Ei,Es,--+,E, - -} so that E, €Y, for all k=
1,2,3,--- and y €[1,a). Then adopting a similar argument to one used in
getting the extension from a to (a + 1) above we get that a countably infinite,
pairwise disjoint collection

{Cl, CZ’ C3, cee Cn’ .o }

of families Cy, C,, - - -, G,, - - - of compact, open sets with properties (i}(v) in the
beginning of the proof of this theorem exist. Thus our transfinite induction is
complete and we do get all our sets Y, and partial partitions =, forall « €[1,Q)
so that all the conditions (a)-(i) of the theorem are satisfied by the Y, and =,
that we have chosen except possibly (g). We now prove that (g) is also satisfied by
the chosen sets Y, and partial partitions .. To prove (g) we first observe the
following statement:

(g) Leta€[l,Q)and A C Y., and A € 7,-, then every open set U C BZ
so that ACUCY,,, and U is saturated under m,.. has a non-empty
intersection with Y, — U ,_. Y,
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Now let @ be a given limit ordinal in [1, Q) and assume that we have shown
that if §, ¥y €[1, @) and § < y then every open set V of BZ so that V C Y, and
V N(Y, — Y,) # @ has a non-empty intersection with Y; — U ,.; Y. Then from
the construction of Y, and 7. we have that if A € w, and A§ U ... Y. then
there is an increasing sequence of ordinals a; < a,<---<a, <--- and a set
B C U ... Y so that B is open in BZ and B is saturated under the partial
partition m,- and B is open and closed relative to U .. Y.and B— B = A and
BN(Y.,,. — Y.)#Jforall n >0. Thus we have that if V is an open set in Y,
(and hence openin BZ)and VN (Y, - U ... Y:)= A and V is saturated under
7. then VN (Y, — Y. )#J for some n so that a, > 8. So by our induction
assumption VN (Ys— U, Y)#D.

Now it is clear from the above facts and transfinite induction and the fact that
Y, is dense in BZ and 7, is the collection {{n}|n € Z} that (g) is true for all
a €[1,Q).

Thus we have proved our theorem.

THEOREM 4. There exists a compact Hausdorff scattered space X which is
uncountable but X* — X**' is countable for all a €[1,Q) and also having only
countably many isolated points.

Proor. For every ordinal a € [1, Q) let . be the partial partition of Z and
Y. be the open subset of 8Z which was constructed in Theorem 3. Now define a
partition 7 of BZ as m = U.cam U {BZ — U.<a Y.}. Let X be the quotient
BZ/|w of BZ induced by . Let q : BZ — BZ/w be the canonical map. We will
show that X is a compact Hausdorff separable space in which X* — X**" is
countable for all « €[1,Q). For this, we see that = is larger than =, for all
a €[1,9Q). Hence Y, is saturated under 7 and thus q(Y.) is open in X for all
a €[1,Q). Let A C Y, and belong to m. for some a € [1,Q). Then there is a
compact open set V of BZ so that A C V C Y, and V is saturated under 7., and
hence 7. So q(V) is a compact open subset of X containing q(A) and not
containing q(BZ — U, Y,). If A, BE€ 7 and neither of them is equal to
BZ — U..q Y. then there is a 8 €[1,Q) so that A U B C Y, and hence there
exists a compact open set w in BZ sothatw C Ysand A Cw C(BZ - B)and w
is saturated under 7. Then q(w) is compact and open in X which contains q(A)
and not q(B). Thus we get that X is Hausdorff. It is clear that X is compact. It is
also clear that q(Z) is dense in X and q({n}) is open in X because {n} € = for all
n € Z. Thus the set of isolated points of X is countable. Now let a € [1,(2) be
given. The statement (g) of Theorem 3 gives us that g(Y, — U,<.Y,)is dense in
q(Yer1— Y.). So if we know that q(A)E X" for alll A€En, and A C
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(Y. —(U,<. Y,)) then it follows that q(B)€ X**' for all B € m.., and B C
(Y.+1— Y.). Likewise, we get from (g) of Theorem 3 that if « is a limit ordinal in
[1,Q)and q(A)E X" forall A € Y, — Us, Y; and y €[1,a) and A € 7, then
q(B)€E X* for all B€E€ m, and B C (Y. — U, Ys). Since q(Y.) is countable
for all & € [1, ) it follows that X* — X**! is countable for all « € [1, Q). Now (¢)
of Theorem 3 gives that q(Y.) is scattered and we have seen above that it is
open in X and q(Y.)Cq(Ys) if @, BE[1,Q) and o <B. Thus if M C X is
non-empty and has more than one element in it and 8 is the least ordinal in [1, Q)
so that M N q(Ys) # < then the fact that q(Y5) is open in X and is scattered
gives us that there is an x,€ M N q(Y5) so that {xo} is open in the relative
topology of q(Ys) N M and hence open in M because q(Y;) N M is also open
relative to M. So X is scattered.

CoROLLARY 5. There exists a separable compact, T: scattered space X such
that X is not strongly scattered and such that every derived set X* with | X°| not
finite is not strongly scattered. (We recall that a space Y is strongly scattered if
|A|=|A] forall ACY).

Proor. The space X of Theorem 4 has the properties required in
Corollary 5.

REMARK. We note that the characteristic system of the space X of Theorem
4is (Q,1).
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